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Abstract

A new harmonic balance approach for solving the large amplitude nonlinear vibration of a constant-tension string is

introduced. The coupling of Newton’s method with harmonic balancing takes the advantage of reducing the deficiency and

complexity of the classical harmonic balance method in dealing with the nonlinear systems. The solutions are directly

induced from a set of linear algebraic equations instead of a set of complicated, coupled nonlinear algebraic equations.

Illustrative examples are selected and compared to some published data to verify the accuracy of the higher-order

solutions.

r 2008 Elsevier Ltd. All rights reserved.
Consider a partial differential wave equation which models the pure, geometrical nonlinear effect of the
curvature for large amplitude transverse vibrations of a flexible string under constant tension [1–5]

c2
q2u

qx2
¼ 1þ

qu

qx

� �2
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q2u

qt2
(1)

where u(x, t) is the transverse amplitude in relation to the spatial x and temporal t coordinates, c ¼
ffiffiffiffiffiffiffiffiffiffiffi
t0=r0

p
is

the velocity of transverse wave with t0 and r0 being the tension and the mass per unit length, respectively. The
string vibrates between the fixed end-points of length L governed by the following boundary conditions:

uð0; tÞ ¼ uðL; tÞ ¼ 0 (2)

By virtue of solving Eq. (1) readily, Gottlieb [3] proposed the reduction procedure to turn the wave equation
into an ordinary differential equation by means of the averaging technique. The partial differential equation
can be transformed into spatial or temporal ordinary differential equations relying upon the amplitude
function deemed as the harmonic form (i.e. u(x, t) ¼ U(x)cos(ot)) or the fundamental modal shape for linear
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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wave equation (i.e. u(x, t) ¼ V(t)sin(px/L)), respectively. In this communication, it mainly investigates the
solution approach for the temporal nonlinear ordinary nonlinear differential equation [3,4]. Taking

uðx; tÞ ¼ V ðtÞ sin
p
L

x
� �

(3)

Substituting Eq. (3) into Eq. (1) and averaging over the string length L (i.e. a Galerkin procedure is performed
to take the multiplication of Eq. (3) by Eq. (1) and integrate such equation to x from 0 to L) result in an
ordinary second-order differential equation as

d2S

dt2
¼ �

bS

1þ S2=2þ S4=8
(4)

where

SðtÞ ¼
p
L

V ðtÞ (5)

b ¼
pc

L

� �2
(6)

with the initial conditions

Sð0Þ ¼ a;
dSð0Þ

dt
¼ 0 (7)

The ordinary differential equation (4) has been investigated by the classical harmonic balance (HB) method
[3] but not the perturbation method because of the absence of a small parameter [6]. Although the HB method
[6] is a powerful technique for solving nonlinear systems with large parameters, higher-order analytical
approximations are extremely hard to be developed owing to the appearance and coupling of nonlinear terms
in a set of nonlinear algebraic equations. Hence, the dilemma encountered in solving nonlinear algebraic
equations is that some nonlinear terms must be either neglected in order to give way for an asymptotic
expression or implicated by numerical analysis to obtain numerical results. As a result, the main focus of this
communication is to introduce an effective and accurate approximate analytical approach by coupling
Newton’s method with the harmonic balance method (NHB) [7] to increase the flexibility and overcome
the deficiency of the classical HB method. The higher-order solutions of the NHB method have been
developed in multiple applications such as nonlinear Jerk equation involving the third-temporal derivative of
displacement [8], the Duffing-harmonic oscillator having a rational form for the restoring force [9], and the
post-buckling deformation of a ring under uniform hydrostatic pressure [10]. Thus, the NHB method is
adopted herein for solving the temporal ordinary differential equation derived from the nonlinear vibration of
a constant-tension string.

By introducing an independent variable, t ¼
ffiffiffiffi
Ô

p
t, Eqs. (4) and (7) are rewritten as

OS00 1þ
1

2
S2 þ

1

8
S4

� �
þ S ¼ 0 (8)

and

Sð0Þ ¼ a;
dSð0Þ

dt
¼ 0 (9)

where O ¼ Ô=b and a prime denotes differentiation with respect to t. The independent variable is chosen in
such a way that the solution of Eq. (8) is a periodic solution of t of period 2p. In Eq. (4), the restoring force
function �f(S) ¼ �bS/(1+S2/2+S4/8) is an odd function (i.e. �f(S) ¼ f(�S)), so that the system vibrates
around the equilibrium position between the symmetric limits [�a, a] and the periodic solution is written as
SðtÞ ¼

P1
j¼0k2jþ1 cos½ð2j þ 1Þt�. By means of Newton’s method [7], the squared angular frequency parameter

O ¼ Ô=b and periodic solution S are set as

O ¼ O1 þ DO1 (10)
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S ¼ S1 þ DS1 (11)

Substituting both Eqs. (10) and (11) into Eq. (8) and linearizing the governing equation obtain

O1 S001 þ DS001 þ
1
2
S001S2

1 þ
1
2
S2
1DS001 þ

1
8
S001S4

1 þ
1
8
S4
1DS001 þ S001S1DS1 þ

1
2
S001S3

1

�
DS1

�
þ DO1 S001 þ

1
2
S001S2

1 þ
1
8
S001S4

1

� �
þ S1 þ DS1 ¼ 0 (12)

To fulfill the initial conditions of Eq. (9), it implies that

DS1ð0Þ ¼ 0; DS01ð0Þ ¼ 0 (13)

where DS1(t) is a periodic function of t with a period of 2p to be determined later.
For the lowest-order or first-order analytical approximation, we initially set

S1ðtÞ ¼ a cos t (14)

DO1 ¼ 0; DS1 ¼ 0 (15)

Substituting Eqs. (14) and (15) into Eq. (12) and setting the coefficient of cos t to zero yields

O1ðaÞ ¼
Ô1ðaÞ

b
¼

64

64þ 24a2 þ 5a4
(16)

Therefore, the first-order analytical approximation of period and periodic solution for the temporal
equation (4) is

T1ðaÞ ¼
2pffiffiffi
b

p 64

64þ 24a2 þ 5a4

� ��ð1=2Þ
(17)

and

S1ðtÞ ¼ a cos
ffiffiffiffiffiffiffiffiffi
bO1

p
t (18)

Eqs. (17) and (18) are equivalent to the first approximate solution derived by Gottlieb [3].
For the second-order analytical approximation, we substitute the following equation to Eq. (12):

DS1ðtÞ ¼ c1ðcos t� cos 3tÞ (19)

Expanding the resulting expression into a trigonometric series and setting the coefficients of cos t and cos 3t to
zero yield two linear algebraic equations as

aþ c1 � aDO1 �
3
8
a3 DO1 �

5
64

a5 DO1 � aO1 �
3
8
a3O1 �

5
64

a5O1

� c1O1 þ
1
4
a2c1O1 þ

15
128

a4c1O1 ¼ 0 (20)

�c1 �
1
8
a3 DO1 �

5
128

a5 DO1 �
1
8
a3O1 �

5
128

a5O1 þ 9c1O1 þ
19
8

a2c1O1 þ
53
128

a4c1O1 ¼ 0 (21)

Therefore, the second-order analytical approximation of period and periodic solution for the temporal
equation (4) is

T2ðaÞ ¼
2pffiffiffiffiffiffiffiffiffi
bO2

p ; O2 ¼ O1 þ DO1 (22)

and

S2ðtÞ ¼ ðaþ c1Þ cos
ffiffiffiffiffiffiffiffiffi
bO2

p
t� c1 cos 3

ffiffiffiffiffiffiffiffiffi
bO2

p
t (23)
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where

DO1ðaÞ ¼ � ð16; 384� 163; 840O1 � 47; 104a2O1 � 8704a4O1 þ 147; 456O2
1

þ 96; 256a2O2
1 þ 33; 024a4O2

1 þ 5184a6O2
1 þ 455a8O2

1Þ=ð�16; 384

� 8192a2 � 1920a4 þ 147; 456O1 þ 96; 256a2O1 þ 33; 024a4O1

þ 5184a6O1 þ 455a8O1Þ (24)

c1ðaÞ ¼ ð2048a3 þ 640a5Þ=ð�16; 384� 8192a2 � 1920a4 þ 147; 456O1

þ 96; 256a2O1 þ 33; 024a4O1 þ 5184a6O1 þ 455a8O1Þ (25)

and O1 in Eqs. (22), (24) and (25) can be found from Eq. (16).
The derivation of third-order analytical approximation is based on the second-order analytical

approximation, thus Eq. (12) is expressed as

O2 S002 þ DS002 þ
1
2
S002S2

2 þ
1
2
S2
2 DS002 þ

1
8
S002S4

2 þ
1
8
S4
2 DS002 þ S002S2 DS2 þ

1
2
S002S3

2

�
DS2

�
þ DO2 S002 þ

1
2
S002S2

2 þ
1
8
S002S4

2

� �
þ S2 þ DS2 ¼ 0 (26)

The function DS2(t) is set as

DS2ðtÞ ¼ c2ðcos t� cos 3tÞ þ c3ðcos 3t� cos 5tÞ (27)

Hence, by substituting of Eqs. (23) and (27) into Eq. (26) and expanding of the resulting expression, then
setting the coefficients of cos t, cos 3t and cos 5t to zero result in three linear algebraic equations as

k1 DO2 þ k2c2 þ k3c3 þ k4 ¼ 0 (28)

k5 DO2 þ k6c2 þ k7c3 þ k8 ¼ 0 (29)

k9 DO2 þ k10c2 þ k11c3 þ k12 ¼ 0 (30)

Solving the simultaneous equations (28)–(30) obtains

DO2ðaÞ ¼ �
�k4k7k10 þ k3k8k10 þ k4k6k11 � k2k8k11 � k3k6k12 þ k2k7k12
�k3k6k9 þ k2k7k9 þ k3k5k10 � k1k7k10 � k2k5k11 þ k1k6k11

(31)

c2ðaÞ ¼ �
�k4k7k9 þ k3k8k9 þ k4k5k11 � k1k8k11 � k3k5k12 þ k1k7k12
k3k6k9 � k2k7k9 � k3k5k10 þ k1k7k10 þ k2k5k11 � k1k6k11

(32)

c3ðaÞ ¼ �
k4k6k9 � k2k8k9 � k4k5k10 þ k1k8k10 þ k2k5k12 � k1k6k12
k3k6k9 � k2k7k9 � k3k5k10 þ k1k7k10 þ k2k5k11 � k1k6k11

(33)

Therefore, the third-order analytical approximation of period and periodic solution for the temporal
equation (4) is

T3ðaÞ ¼
2pffiffiffiffiffiffiffiffiffi
bO3

p ; O3 ¼ O2 þ DO2 (34)

and

S3ðtÞ ¼ ðaþ c1 þ c2Þ cos
ffiffiffiffiffiffiffiffiffi
bO3

p
tþ ðc3 � c2 � c1Þ cos 3

ffiffiffiffiffiffiffiffiffi
bO3

p
t� c3 cos 5

ffiffiffiffiffiffiffiffiffi
bO3

p
t (35)

where c1 in Eq. (35) is derived in Eq. (25) and ki (i ¼ 1–12) in Eqs. (28)–(33) are presented in Appendix A.
Further analytical approximations can be developed based on the procedure as above for the first three
approximate solutions.
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For reference, the exact period Te(a) and exact frequency ôeðaÞ ¼
ffiffiffi
b

p
oeðaÞ are derived here via direct

integration of Eq. (4) with the help of Eq. (7) as

TeðaÞ ¼
2pffiffiffi
b

p
oeðaÞ

¼
2ffiffiffi
b

p Z p=2

0

a cos yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan�1ð1þ ða2=2ÞÞ � tan�1ð1þ ða2 sin2 y=2ÞÞ

q dy (36)

The subscripts ‘‘HB1’’, ‘‘HB2’’, ‘‘1’’, ‘‘2’’, ‘‘3’’ and ‘‘e’’ of period T and periodic solution S denote,
respectively, the first-order HB solution [3], the second-order HB solution [3], the first-order NHB solution,
the second-order NHB solution, the third-order NHB solution and the exact solution. Because the exact
period and frequency are written in terms of an implicit function in Eq. (36), they cannot provide an overall
view of the nature of the systems in response to changes in parameters that affect nonlinearity. From a
computational point of view, the exact periodic solutions cannot be explicitly obtained by substituting the
initial conditions as explained above.

As observed in Tables 1 and 2, it is obvious that the third-order analytical approximation
ffiffiffi
b

p
T3 in these cases

shows the best agreement as compared to the exact solution
ffiffiffi
b

p
Te among the other solutions. The accuracy of

the first-order
ffiffiffi
b

p
THB1 and second-order

ffiffiffi
b

p
THB2 analytical approximations constructed by the HB method [3]

is, respectively, similar to the first-order
ffiffiffi
b

p
T1 and second-order

ffiffiffi
b

p
T2 analytical approximations developed

herein by the NHB method. Although the third-order solutions of Eq. (4) can be alternatively constructed using
the classical HB method, the most salient advantage of the NHB method over the classical ones is its solutions
obtained from a set of linear algebraic equations instead of nonlinear algebraic equations.

To determine the exact period as a-0, we can define S51 in Eq. (4). The temporal nonlinear differential
equation is reduced to a linear harmonic oscillating system d2S/dt2+bS ¼ 0. Such reduction to a linear
harmonic system is similar to the designation of a rational conservative Duffing-harmonic oscillator [9,11].

The exact period is then obviously derived as Te ¼ 2p
. ffiffiffi

b
p

as a-0. From Eqs. (17), (22) and (34), we can also

derive the following relations: ffiffiffi
b

p
T1

lim a!0

¼
ffiffiffi
b

p
T2

lim a!0

¼
ffiffiffi
b

p
T3

lim a!0

¼ 2p (37)
Table 1

Comparison of the exact and approximate solutions for the period parameters
ffiffiffi
b

p
T

S(0) ¼ a
ffiffiffi
b

p
THB1, Eq. (4.2) in Ref. [3]

ffiffiffi
b

p
Te, Eq. (36) or Ref. [3]

ffiffiffi
b

p
T1, Eq. (17)

ffiffiffi
b

p
T2, Eq. (22)

ffiffiffi
b

p
T3, Eq. (34)

0.1 6.294980 6.294977 6.294980 6.294977 6.294977

0.2 6.33052 6.33047 6.33052 6.33047 6.33047

0.5 6.58576 6.58379 6.58576 6.58377 6.58379

1.0 7.57411 7.54147 7.57411 7.54010 7.54140

2.0 12.1673 11.7148 12.1673 11.6772 11.7066

5.0 48.345 41.918 48.345 42.173 41.875

10.0 179.9 148.8 179.9 152.9 149.4

Table 2

Comparison of the exact and approximate solutions for the period parameters
ffiffiffi
b

p
T

S(0) ¼ a
ffiffiffi
b

p
THB2, Eq. (4.3) in Ref. [3]

ffiffiffi
b

p
Te, Eq. (36) or Ref. [3]

ffiffiffi
b

p
T1, Eq. (17)

ffiffiffi
b

p
T2, Eq. (22)

ffiffiffi
b

p
T3, Eq. (34)

0.099984373 6.294973 6.294973 6.294976 6.294973 6.294973

0.19987494 6.330415 6.330415 6.330464 6.330415 6.330415

0.49804732 6.581367 6.581404 6.583346 6.581380 6.581404

0.98495702 7.499928 7.502130 7.532834 7.500862 7.502064

1.9134615 11.1700 11.2321 11.6201 11.2000 11.2255

4.6552500 37.145 37.144 42.530 37.288 37.099

9.2746941 132.0 128.9 155.4 132.2 129.3
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Fig. 1. Comparison of the approximate solutions with the exact solution for a ¼ 0.2 and b ¼ 1.
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Fig. 2. Comparison of the approximate solutions with the exact solution for a ¼ 5.0 and b ¼ 1.
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To further illustrate and verify the accuracy for this new approximate analytical approach, the time history
periodic response of Eq. (4) derived from various approximations is presented and compared in Figs. 1–3. As
the parameter b ¼ (pc/L)2 in Eq. (4) does not affect the accuracy of the analytical approximations,

Ti ¼ 2p
. ffiffiffiffiffiffiffiffi

bOi

p
ði ¼ 1; 2; 3Þ, comparing to the exact solution, Te ¼ 2p

. ffiffiffi
b

p
oe

� �
, the parameter b can be

normalized to a unit value (i.e. b ¼ 1) in order to compare the periodic solutions of various sources readily. In
Fig. 1, all solutions show excellent agreement with respect to the exact solution for a small initial condition
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Fig. 3. Comparison of the approximate solutions with the exact solution for a ¼ 9.2746941 and b ¼ 1.
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a ¼ 0.2. In Figs. 2 and 3, the first-order analytical approximation S1(t) deviates from the exact solution Se(t)
seriously except at the very beginning of time. The second-order solutions, SHB2(t) and S2(t), are capable of
achieving good results, but significantly disagreement is expected to increase as time progresses. This is mainly
due to increased contribution of nonlinear effects, and hence the number of harmonic terms of the first- and
second-order analytical approximations used is rather insufficient. However, the third-order solution S3(t)
does not only able to provide very accurate result, but also expect to maintain very close agreement with
respect to the exact solution as time progresses. After evaluating the periodic solution S(t), the transverse
amplitude u(x, t) of a string under constant tension according to Eq. (3) can be expressed as follows:

uiðx; tÞ ¼
L

p
SiðtÞ sin

p
L

x
� �

(38)

in which the subscripts i ¼ 1, 2, 3 and e of u correspond, respectively, to the first-, second- and third-order
analytical approximations of the NHB method and the exact solution.

In summary, the NHB method has been successfully employed to develop accurate, higher-order solutions
for the temporal ordinary nonlinear differential equation. At the same time, it removes the analytical
difficulties encountered in applying the classical HB method. The NHB approximate solutions are established
analytically and systematically. Furthermore, the higher-order solutions show an excellent convergence and
accuracy as compared to the exact solution for small as well as large amplitude vibration of string because it is
not restricted to the presence of a small parameter. In addition, the NHB method does not require a known
initial condition a priori, which is a condition for numerous numerical methods.

Appendix A

The variables ki (i ¼ 1–12) in Eqs. (28)–(33) are expressed as follows:

k1 ¼ � a�
3a3

8
�

5a5

64
� c1 þ

a2c1

4
þ

15a4c1

128
�

25ac21
8
�

23a3c21
32
�

15c31
4
�

73a2c31
32

�
105ac41
32
�

245c51
128

(A.1)
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k2 ¼ 1� O2 þ
a2O2

4
þ

15a4O2

128
�

25ac1O2

4
�

23a3c1O2

16
�

45c21O2

4
�

219a2c21O2

32

�
105ac31O2

8
�

1225c41O2

128
(A.2)

k3 ¼ �
11a2O2

8
�

9a4O2

32
� 2ac1O2 �

29a3c1O2

16
þ

19c21O2

4
�

3a2c21O2

2
þ

105ac31O2

32
þ

165c41O2

32
(A.3)

k4 ¼ aþ c1 � aO2 �
3a3O2

8
�

5a5O2

64
� c1O2 þ

a2c1O2

4
þ

15a4c1O2

128
�

25ac21O2

8

�
23a3c21O2

32
�

15c31O2

4
�

73a2c31O2

32
�

105ac41O2

32
�

245c51O2

128
(A.4)

k5 ¼ �
a3

8
�

5a5

128
þ 9c1 þ

19a2c1

8
þ

53a4c1

128
þ

41ac21
8
þ

17a3c21
16
þ 6c31 þ

97a2c31
32

þ
605ac41
128

þ
385c51
128

(A.5)

k6 ¼ � 1þ 9O2 þ
19a2O2

8
þ

53a4O2

128
þ

41ac1O2

4
þ

17a3c1O2

8
þ 18c21O2 þ

291a2c21O2

32

þ
605ac31O2

32
þ

1925c41O2

128
(A.6)

k7 ¼ 1� 9O2 þ
5a2O2

8
þ

19a4O2

64
�

15ac1O2

2
�

5a3c1O2

16
�

73c21O2

4
�

291a2c21O2

64

�
435ac31O2

32
�

843c41O2

64
(A.7)

k8 ¼ � c1 �
a3O2

8
�

5a5O2

128
þ 9c1O2 þ

19a2c1O2

8
þ

53a4c1O2

128
þ

41ac21O2

8
þ

17a3c21O2

16

þ 6c31O2 þ
97a2c31O2

32
þ

605ac41O2

128
þ

385c51O2

128
(A.8)

k9 ¼ �
a5

128
þ

11a2c1

8
þ

47a4c1

128
þ

3ac21
8
þ

9a3c21
16
� c31 þ

49a2c31
64
þ

25ac41
128
�

49c51
128

(A.9)

k10 ¼
11a2O2

8
þ

47a4O2

128
þ

3ac1O2

4
þ

9a3c1O2

8
� 3c21O2 þ

147a2c21O2

64
þ

25ac31O2

32
�

245c41O2

128
(A.10)

k11 ¼ � 1þ 25O2 þ
43a2O2

8
þ

61a4O2

64
þ

31ac1O2

2
þ

111a3c1O2

32
þ

167c21O2

8

þ
579a2c21O2

64
þ

463ac31O2

32
þ

691c41O2

64
(A.11)

k12 ¼ �
a5O2

128
þ

11a2c1O2

8
þ

47a4c1O2

128
þ

3ac21O2

8
þ

9a3c21O2

16
� c31O2 þ

49a2c31O2

64

þ
25ac41O2

128
�

49c51O2

128
(A.12)

where O2 and c1 in Eqs. (A.1)–(A.12) are obtained from Eqs. (22) and (25), respectively.
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